Automatically Proving Microkernel Security

Olivier Nicole

Co-supervisors: Matthieu Lemerre¹, Xavier Rival²

¹CEA List

 2 ENS

RESSI, Dec. 2020

Our goal: prove absence of privilege escalation (APE).
 prove absence of run-time errors (ARTE).
 Automatically, with few annotations, from the machine code

We focus on embedded kernels.

► No dynamic allocation

Protection mechanisms

- page tables, or
- segments (32-bit x86)

Specify (address range, permissions) pairs. **To verify:** at kernel exit, the memory protection state is correct. Requires analyzing all the kernel's code.

Challenge 1: machine code analysis

```
void hw_context_idle(void) {
  struct context *high = context_idle();
  struct hw context *ctx = &high->hw context:
  asm volatile
    ("mov %0,%%esp" : : "r"((uintptr_t) ctx + sizeof(struct pusha))
                            + sizeof(struct intra_privilege_interrupt_frame))
                    : "memory");
  asm("sti");
  asm("hlt");
  asm("jmp error_infinite_loop");
  __builtin_unreachable ();
```

Challenge 1: machine code analysis

no control flow

- no types, no memory partitioning
- masks, legitimate overflows, low-level comparisons, etc.

Challenge 1: machine code analysis

no control flow

- no types, no memory partitioning
- masks, legitimate overflows, low-level comparisons, etc.

Contribution

BINSEC/CODEX, a static analyzer based on abstract interpretation.

- Computes CFG on-the-fly
- Rich numerical abstractions + symbolic information

Challenge 2: parameterized kernels

Executable file

	Kernel code & data		
	Interface		
	Applications code & data		

Challenge 2: parameterized kernels

	Kernel code & data
	Interface
	Applications code & data

type Flags = Int8 with (self & PRIVILEGED) == 0; **type** Context = **struct** { Int8 pc; Int8 sp; Flags flags; }; type Segment = struct { Int8 base: Int8 size and rights; } with self.base > kernel_last_addr **type** Memory_Table = **struct** { Segment code; Segment data; } type Thread = struct { Memory Table *mt: Context ctx: Thread *next; } type Interface = struct Thread[nb_thread]* threads; (Int8 with self = nb_threads) threads length; }

Challenge 2: parameterized kernels

Executable file

	Kernel code & data		
	Interface		
	Applications code & data		

Contribution A type-based memory analysis

```
type Flags = Int8 with (self & PRIVILEGED) == 0;
type Context = struct { Int8 pc; Int8 sp; Flags flags; };
type Segment = struct {
 Int8 base:
  Int8 size and rights;
} with self.base > kernel_last_addr
type Memory_Table = struct { Segment code; Segment data; }
type Thread = struct {
  Memory Table *mt:
 Context ctx:
  Thread *next; }
type Interface = struct
   Thread[nb_thread]* threads;
   (Int8 with self = nb_threads) threads length; }
```

Experimental evaluation

Case study 1: EducRTOS

- Small academic OS developed for teaching purposes
- Both separation kernel and real-time OS, dynamic thread creation
- ▶ 1,200 x86 instructions.
- Protection by segmentation.

Proved APE and ARTE on 96 variants of EducRTOS. Varying parameters:

- compiler (GCC/Clang), optimization flags
- scheduling algorithm, dynamic thread creation (enabled/disabled)...

Verification time: from 1.6 s to 73 s. 14 lines of annotations.

Experimental evaluation

Case study 2: AnonymOS

- Industrial microkernel used in industrial settings
- Multicore
- 329 functions, ~10,000 instructions
- Protection using page tables.

2 versions

- BETA version: 1 vulnerability
- v1 version: vulnerability fixed
- *Specific* = *Generic* + restriction on stack sizes

		Generic annotations		Specific annotations		
# shape	generated	1057				
annotations	annotations manual		57 (5.11%)		58 (5.2	0%)
Kernel version		BETA	v1	BETA	v1	
invariant	status	1	1	1	1	
computation	time (s)	647	417	599	406	
# alarms in runtime		1 true error 2 false alarms	1 false alarm	1 true error 1 false alarm	0 🗸	
user tasks	status	1	1	 Image: A second s	1	
checking	time (s)	32	29	31	30	
Proves APE?		N/A	\sim	N/A	1	

Proved APE and ARTE in 430 s. 58 lines of annotations.

Summary and perspectives

- Verification of APE and ARTE on kernels is possible
- from the binary
- unbounded loops
- small number of manual annotations.

Submission under review: O. Nicole, M. Lemerre, S. Bardin, X. Rival, "No Crash, No Exploit: Automated Verification of Embedded Kernels", *arXiv:2011.15065*

Perspectives

- Non-interference between tasks
- Analysis of other software
- Efficient verification of memory safety (70 % of vulnerabilities¹)
- Mixed-language analysis, off-the-shelf component analysis

¹M. Miller, Trends, challenges, and strategic shifts in the software vulnerability mitigation landscape, *BlueHat IL*, 2016