
Automatically Proving Microkernel Security

Olivier Nicole

Co-supervisors: Matthieu Lemerre1, Xavier Rival2

1CEA List

2ENS

RESSI, Dec. 2020



Kernels are critical to security.

Our goal: I prove absence of privilege escalation (APE).
I prove absence of run-time errors (ARTE).

Automatically, with few annotations, from the machine code



Kernels are critical to security.

Our goal: I prove absence of privilege escalation (APE).
I prove absence of run-time errors (ARTE).

Automatically, with few annotations, from the machine code



Kernels are critical to security.

Our goal: I prove absence of privilege escalation (APE).
I prove absence of run-time errors (ARTE).

Automatically, with few annotations, from the machine code



Kernels are critical to security.

Our goal: I prove absence of privilege escalation (APE).
I prove absence of run-time errors (ARTE).

Automatically, with few annotations, from the machine code



Kernels are critical to security.

Our goal: I prove absence of privilege escalation (APE).
I prove absence of run-time errors (ARTE).

Automatically, with few annotations, from the machine code



Scope

We focus on embedded kernels.
I No dynamic allocation



state at
kernel exit

state at
kernel entry

initial state

kernel user
tasks init

user code

runtime

Protection mechanisms
I page tables, or
I segments (32-bit x86)

Specify (address range, permissions) pairs.
To verify: at kernel exit, the memory protection state is correct.
Requires analyzing all the kernel’s code.



Challenge 1: machine code analysis



Challenge 1: machine code analysis

I no control flow
I no types, no memory partitioning
I masks, legitimate overflows, low-level comparisons, etc.

Contribution
Binsec/Codex, a static analyzer based on abstract interpretation.
I Computes CFG on-the-fly
I Rich numerical abstractions + symbolic information



Challenge 1: machine code analysis

I no control flow
I no types, no memory partitioning
I masks, legitimate overflows, low-level comparisons, etc.

Contribution
Binsec/Codex, a static analyzer based on abstract interpretation.
I Computes CFG on-the-fly
I Rich numerical abstractions + symbolic information



Challenge 2: parameterized kernels

Kernel code & data

Applications
code & data

Interface

Executable file

Contribution
A type-based memory analysis



Challenge 2: parameterized kernels

Kernel code & data

Applications
code & data

Interface

Executable file

Contribution
A type-based memory analysis



Challenge 2: parameterized kernels

Kernel code & data

Applications
code & data

Interface

Executable file

Contribution
A type-based memory analysis



Experimental evaluation

Case study 1: EducRTOS

I Small academic OS developed for
teaching purposes

I Both separation kernel and real-time
OS, dynamic thread creation

I 1,200 x86 instructions.
I Protection by segmentation.

Proved APE and ARTE on 96 variants
of EducRTOS. Varying parameters:
I compiler (GCC/Clang),

optimization flags
I scheduling algorithm, dynamic

thread creation
(enabled/disabled)…

Verification time: from 1.6 s to 73 s.
14 lines of annotations.



Experimental evaluation

Case study 2: AnonymOS

I Industrial microkernel used in
industrial settings

I Multicore
I 329 functions, ~10,000 instructions
I Protection using page tables.

2 versions
I beta version: 1 vulnerability
I v1 version: vulnerability fixed

Specific = Generic + restriction on stack sizes

Proved APE and ARTE in 430 s.
58 lines of annotations.



Summary and perspectives

I Verification of APE and ARTE on kernels is possible
I from the binary
I unbounded loops
I small number of manual annotations.

Submission under review: O. Nicole, M. Lemerre, S. Bardin, X. Rival, “No Crash, No
Exploit: Automated Verification of Embedded Kernels”, arXiv:2011.15065

Perspectives
I Non-interference between tasks
I Analysis of other software
I Efficient verification of memory safety (70 % of vulnerabilities1)
I Mixed-language analysis, off-the-shelf component analysis

1M. Miller, Trends, challenges, and strategic shifts in the software vulnerability mitigation landscape,
BlueHat IL, 2016

https://arxiv.org/abs/2011.15065

