Automatically Proving Microkernel Security

Olivier Nicole

Co-supervisors: Matthieu Lemerre', Xavier Rival?
TCEA List

2ENS

RESSI, Dec. 2020

Task

Task

Task

Kernel

Kernels are critical to security.

Task Task Task

Kernels are critical to security.

Task Task Task
1 2 3
T
7/ /4
YA /

Kernels are critical to security.

Task

Task

Task

Kernel

Kernels are critical to security.

Task Task Task

Kernel

Kernels are critical to security.

Our goal: » prove absence of privilege escalation (APE).

» prove absence of run-time errors (ARTE).
Automatically, with few annotations, from the machine code

Scope

We focus on embedded kernels.

» No dynamic allocation

o runtime
/initial state\ / state at \ / state at \
t \\\Bernelentrx/// kernelexlt//
\Qne" tay ini K_> —

user code

Protection mechanisms
> page tables, or
> segments (32-bit x86)

Specify (address range, permissions) pairs.
To verify: at kernel exit, the memory protection state is correct.
Requires analyzing all the kernel’s code.

Challenge 1: machine code analysis

void hw_context_idle(veid) {
context xhigh = context_idle();
hw_context *ctx = &high->hw_context;

m volatile
("mov p" : : "r"((uintptr_t) ctx + s (SIEED)

intra vilege_dinterrupt_frame))

asm("sti");

m("h1t");

m("jmp error_infinit
__builtin_unreachable

Challenge 1: machine code analysis

> no control flow
P no types, no memory partitioning

> masks, legitimate overflows, low-level comparisons, etc.

Challenge 1: machine code analysis

> no control flow
» no types, no memory partitioning

> masks, legitimate overflows, low-level comparisons, etc.

Contribution
Binsec/CoDEX, a static analyzer based on abstract interpretation.

» Computes CFG on-the-fly

» Rich numerical abstractions + symbolic information

Challenge 2: parameterized kernels

Executable file

Kernel code & data

Interface

Applications
code & data

Challenge 2: parameterized kernels

Executable file

Kernel code & data

Interface

Applications
code & data

type Flags = Int8 with (self & PRIVILEGED) == 0;
type Context = struct { Int8 pc; Int8 sp; Flags flags; };

type Segment = struct {
Int8 base;
Int8 size_and_rights;
} with self base > kernel_last_addr

type Memory_Table = struct { Segment code; Segment data; }

type Thread = struct {
Memory_Table =mt;
Context ctx;
Thread =next; }

type Interface = struct {
Thread[nb_thread]* threads;
(Int8 with self = nb_threads) threads_length; }

Challenge 2: parameterized kernels

Executable file

Kernel code & data

Interface

Applications
code & data

Contribution
A type-based memory analysis

type Flags = Int8 with (self & PRIVILEGED) == 0;
type Context = struct { Int8 pc; Int8 sp; Flags flags; };

type Segment = struct {
Int8 base;
Int8 size_and_rights;
} with self base > kernel_last_addr

type Memory_Table = struct { Segment code; Segment data; }

type Thread = struct {
Memory_Table =mt;
Context ctx;
Thread =next; }

type Interface = struct {
Thread[nb_thread]* threads;
(Int8 with self = nb_threads) threads_length; }

Experimental evaluation

Case study 1: EducRTOS
» Small academic OS developed for
teaching purposes

» Both separation kernel and real-time
OS, dynamic thread creation

» 1,200 x86 instructions.

» Protection by segmentation.

Proved APE and ARTE on 96 variants
of EducRTOS. Varying parameters:
» compiler (GCC/Clang),
optimization flags
» scheduling algorithm, dynamic
thread creation

(enabled/disabled)...

Verification time: from 1.6 s to 73 s.
14 lines of annotations.

Experimental evaluation

Case study 2: AnonymQOS
» Industrial microkernel used in
industrial settings
» Multicore
» 329 functions, ~10,000 instructions

» Protection using page tables.

2 versions
» BETA version: 1 vulnerability
» v1 version: vulnerability fixed

Specific = Generic + restriction on stack sizes

Generic annotations | Specific annotations
shape | generated 1057
annotations | manual 57 (5.11%) [58 (5.20%)
Kernel version BETA vl BETA \21
invariant | status v v v v
computation [ime (s) 647 417 599 406
. . 1 true error 1 false 1 true error
alarms in runtime 2 false alarms alarm 1 false alarm 0/
user tasks | status v v v v
checking |"ime (s) 32 29 31 30
Proves APE? [NA | Na [/]

Proved APE and ARTE in 430 s.
58 lines of annotations.

Summary and perspectives

» Verification of APE and ARTE on kernels is possible
» from the binary

» unbounded loops

» small number of manual annotations.

Submission under review: O. Nicole, M. Lemerre, S. Bardin, X. Rival, “No Crash, No
Exploit: Automated Verification of Embedded Kernels”, arXiv:2011.15065

Perspectives
» Non-interference between tasks
> Analysis of other software
» Efficient verification of memory safety (70 % of vulnerabilities')

> Mixed-language analysis, off-the-shelf component analysis

'M. Miller, Trends, challenges, and strategic shifts in the software vulnerability mitigation landscape,
BlueHat IL, 2016

https://arxiv.org/abs/2011.15065

