e g r-_ 'sf:' "t._-;:f_- j;‘ o e

RESSI 2020 Ty |
Rendez-vous de la Recherche etideil'E naul&,nee)ent m\a SGCurl\des EST ‘s Information

F§52fmrreri [6-18 décembre 2020 (en ligne) pe : \ "\

\1 7

Advisors:
Prof. Roland Groz (Université Grenoble Alpes)
Sébastien Bardin & Matthieu Lemerre (CEA LIST)
Richard Bonichon (Tweag 1/0)

— T <~ G bl
Rist | o 5 Grenobie

0

UNIVERSITE

=38

Context (1)

PSY - GANGNAM STYLE (& AEH) MV

officialpsy
-
+ 2

Google has paid security
researchers over $21 million [EECESEAILIey
for bug bounties, $6.5 million

L1 WANRX:1[o)) [l Microsoft Paid $13.7M in Bug
Bounty Rewards in 2019-2020

The 2019-2020 program year awarded 327 security researchers through
15 bounty programs, with a largest reward of $200,000. 2

ddddddddddd

Context (2)

Vulnerability
Detection
Static Analysis Random Testing w (Symbqllc)

Execution

|september 15, 2020}

Microsoft announces new Project OneFuzz @%”

framework, an open source developer tool to
find and fix bugs at scale

Fuzzing 101

e Fuzzing: randomly generate a ton of inputs
o Feedback: code coverage (e.g., lines, branches)
o Mutation operators: bitflip, insert/delete/overwrite bytes ...

‘hello’ ‘hola’ ‘bonjour’ *xin chao’ ...
R Select N Power mutate (bit flip ...) R
Saaik I i Input Schedule Mutants
1 identify # mutants

® Fuzzing loop

increase coverage

I I
Queue of observe output Run B

interesting inputs N Instrumented PUT |

nothing y Il o

. eages Instrumentation
new
© Triage .
—
> \ | I Tested
-& Program
4

PhD Topic

Improve internal components Hybrid fuzzing

it , ' Vulnerability-oriented fuzzing |
. Directed fuzzing ! g '

Human-in-the-loop fuzzing

Develop an effective directed fuzzing technique to detect complex
vulnerabilities (e.g., Use-After-Free) at binary level in diverse
security applications.

Intuition of

Crash!

Crash! VL_:_I;:;{ZIe
Coverage-guided Fuzzing (CGF) Directed Fuzzing (DGF)
e Increase code coverage (e.g., branches, e Reach predefined targets
basic blocks, paths ...) e Multiple security applications
Applications: testing in general o Developers/Testers: bug reproduction,
Popular fuzzers: AFL, libFuzzer, ... newly-added code testing

o Hackers/Testers: patch testing
Popular fuzzers: AFLGo, Hawkeye, ...
New distance-based input metric

e Favorinputs that are "closer” to targets

Use-After-Free (UAF)

* heap buffer overflows
¢ global buffer overflows
» stack buffer overflows

Rarely found by fuzzers
o Complexity: 3 events in sequence
spanning multiple functions
o Temporal & Spatial constraints:
extremely difficult to meet in practice
o Silence: no segmentation fault

char *buf = (char *) malloc (BUF_SIZE); #UAFbUgSfOL_’”gO(;;/") by OSS-Fuzz
in

* use after frees

e uninitialized memory
» stack overflows

e timeouts

e ooms
e leaks

e ubsan

e unknown crashes

» other (e.g. assertions)

1

2 ...

3 free(buf); // pointer buf becomes dangling
1

g

5 strncpy(buf, argv([1], BUF_SIZE-1); // Use-After-Free

Memory Corruption

63% of 2019's exploited 0-day vulnerabilities fall under memory corruption, with half of those memory
corruption bugs being use-after-free vulnerabilities. Memory corruption and use-after-free’s being a common
target is nothing new. EegE Eg B R EE B e n B OEEEE N EE SEE U S 7

Key Insights of

Existing directed fuzzers

Instrumentation

UAFuzz

———

__

Metrics: no ordering
Seed selection: no prioritization

UAF's characteristics

Metrics: dedicated to UAF at different

levels (function, edge and basic block)
Seed selection: similarity and ordering

Sanitizer-based triage process
Triage all inputs — waste time

Triage only potential inputs
Pre-filter for free

Contributions

e Design the first binary-level DGF technique tailored to UAF bugs

e Develop atoolchain UAFuzz built on top of BINSEC and AFL
https://qgithub.com/strongcourage/uafuzz

e Construct a fuzzing benchmark for UAF bugs

e Evaluations:
o Bug Reproduction: outperform existing directed fuzzers
o Patch Testing: find 30 unknown bugs (7 CVESs) in real-world programs
o Generality: our directed techniques are still useful in reproducing different types
of bugs, such as buffer overflow, NULL pointer dereference ...

e Papers & Talks: RAID'20, BlackHat USA20, RESSI'20 & AFADL20

ThankGou,

https://github.com/strongcourage/uafuzz

