
Advanced Fuzzing Techniques Toward
Large-Scale Vulnerability Discovery
Manh-Dung Nguyen - CEA LIST, Université Grenoble Alpes

Advisors:
Prof. Roland Groz (Université Grenoble Alpes)
Sébastien Bardin & Matthieu Lemerre (CEA LIST)
Richard Bonichon (Tweag I/O)

1

Context (1) More softwares, More bugs

2

Context (2) More bugs, More bug-finding tools
Vulnerability

Detection

DynamicStatic

Random Testing Symbolic
ExecutionSmart FuzzingCode Review Static Analysis

3

Fuzzing 101

● Fuzzing: randomly generate a ton of inputs
○ Feedback: code coverage (e.g., lines, branches)
○ Mutation operators: bitflip, insert/delete/overwrite bytes ...

Select
Input Mutants

Power
Schedule

Run
Instrumented PUT

Queue of
interesting inputs

Tested
Program

increase coverage

edges

Crashing
inputs

crash?

observe output

mutate (bit flip …)

identify # mutants

‘hello’ ‘hola’ ‘bonjour’ ‘xin chào’ ...

❶ Instrumentation

❷ Fuzzing loop

nothing
new

Seeds

❸ Triage

4

PhD Topic Smart Fuzzing

Develop an effective directed fuzzing technique to detect complex
vulnerabilities (e.g., Use-After-Free) at binary level in diverse
security applications.

Improve internal components Hybrid fuzzing

Directed fuzzing
Vulnerability-oriented fuzzing

Human-in-the-loop fuzzing

5

Intuition of Directed Fuzzing

Crash!

Crash! Vulnerable
Targets

Coverage-guided Fuzzing (CGF)

● Increase code coverage (e.g., branches,
basic blocks, paths …)

● Applications: testing in general
● Popular fuzzers: AFL, libFuzzer, ...

● Reach predefined targets
● Multiple security applications

○ Developers/Testers: bug reproduction,
newly-added code testing

○ Hackers/Testers: patch testing
● Popular fuzzers: AFLGo, Hawkeye, …
● New distance-based input metric
● Favor inputs that are "closer" to targets

Directed Fuzzing (DGF)

6

Use-After-Free (UAF)

7

UAF bugs found (1%) by OSS-Fuzz
in 2017

● Rarely found by fuzzers
○ Complexity: 3 events in sequence

spanning multiple functions
○ Temporal & Spatial constraints:

extremely difficult to meet in practice
○ Silence: no segmentation fault

7

Key Insights of UAFuzz

8

● Slow at source level (hours)

● General
● Metrics: no ordering
● Seed selection: no prioritization

● Sanitizer-based triage process
● Triage all inputs → waste time

● Fast at binary level (seconds)

● UAF’s characteristics
● Metrics: dedicated to UAF at different

levels (function, edge and basic block)
● Seed selection: similarity and ordering

● Triage only potential inputs
● Pre-filter for free

Instrumentation

Fuzzing loop

Triage

Existing directed fuzzers UAFuzz

Contributions
● Design the first binary-level DGF technique tailored to UAF bugs
● Develop a toolchain UAFuzz built on top of BINSEC and AFL

https://github.com/strongcourage/uafuzz
● Construct a fuzzing benchmark for UAF bugs
● Evaluations:

○ Bug Reproduction: outperform existing directed fuzzers
○ Patch Testing: find 30 unknown bugs (7 CVEs) in real-world programs
○ Generality: our directed techniques are still useful in reproducing different types

of bugs, such as buffer overflow, NULL pointer dereference …
● Papers & Talks: RAID’20, BlackHat USA’20, RESSI’20 & AFADL’20

9

https://github.com/strongcourage/uafuzz

